If it's not what You are looking for type in the equation solver your own equation and let us solve it.
e^2+9=135
We move all terms to the left:
e^2+9-(135)=0
We add all the numbers together, and all the variables
e^2-126=0
a = 1; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·1·(-126)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{14}}{2*1}=\frac{0-6\sqrt{14}}{2} =-\frac{6\sqrt{14}}{2} =-3\sqrt{14} $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{14}}{2*1}=\frac{0+6\sqrt{14}}{2} =\frac{6\sqrt{14}}{2} =3\sqrt{14} $
| x^2(x^2-31)=180 | | 11x+25=20 | | 12x^2-11=-9x | | x=50-60/70 | | -2x-18=9 | | 3t-5=6t-1 | | 9(2x-3)=21x+4+6x | | 1=2/3(10x+15) | | 5^(x-1)=17 | | 5^x-1=17 | | 4x+7=3-+14 | | 3^4t=16 | | 5p(-6)=60 | | -13x+7-3x=3x-73-3x | | 2(1-x^2)+x=0 | | 4x-71=69 | | (9x-7)+((7x-3)=180 | | 4z-28=116 | | 9=0.4m+3 | | 6y-129=105 | | (9e-3)+90+(8e+8)=180 | | .5(8x-6)=x-12 | | j^2=16 | | 10n+19=12n+5 | | -9r+7=-38 | | m+14/5=6 | | x/12-7=1 | | 5x-2=3.125 | | 7=x/6-3 | | m+16/5=6 | | 0.08x3=0.24 | | y-2.2=13.2 |